
Release Notes
uM-FPU64 IDE

Release 411

Changes for IDE Release 411

uM-FPU64 IDE Release 411 adds several new features and fixes some known problems.

Firmware Upgrade
To use uM-FPU64 IDE r411 software, the uM-FPU64 chip must be running firmware release 411
or higher. Firmware files are supplied with the IDE and installed in the Firmware folder of the
IDE installation directory. The firmware can be upgraded using the Tools>Firmware Update…
menu item. Select the appropriate firmware file as follows:

28-pin chip: uMFPU64 64K28 Firmware V411.dat
44-pin chip: uMFPU64 64K44 Firmware V411.dat

Highlights
Parallax Propeller Support
New code generation and a new driver for the Parallax Propeller provide significantly enhanced
performance for Propeller programs. The new capability for updating target files with linked
code supports updating Propeller UTF-16 files (files that contain special characters).

Code Generation using Data Commands
New WRITE_CMD, READ_CMD, and WRITE_DATA commands have been added to the target
description file. These commands allow the code generator to generate code using these new
commands instead of the write byte commands. This creates more efficient code for targets such
as the Parallax Propeller.

Updating Target Files with Linked Code
An automated method for updating target source files with code generated by the compiler has
been added to the IDE using the Update Target File... button in the Output Window. To use
the automated update method, special comments are inserted into the target source file to define
the begin and end points for code insertion. See additional information below.

Trace Messages for FPU Errors
If an error occurs on the FPU and the debug monitor is enabled, a trace message is now
displayed, and Break occurs. See additional information below.

RAM Display window
The RAM Display window has been reimplemented with the following features:
• displays the memory allocation, including DMA area

Micromega Corporation Revised 2014-08-12

Micromega Corporation 2 uM-FPU64 IDE - Release 411

• different allocations are colour coded
• changes to RAM since the last read are highlighted in red
• non-zero values are shown with a light yellow background
• format files can be loaded and saved
• descriptions can be interactively entered in the formatted display
• the format is saved on exit and restored when the IDE restarts
• values can be displayed in decimal, hex, binary and ASCII

Changes to IDE Interface
• new RAM Display Window
• fixed problem with spurious horizontal scroll bar in Matrix Window
• fixed Matrix Window Update button to update both register values and memory
• clicking in the upper left corner of the Number Converter, Interactive Compiler, SERIN,

SEROUT, Flash, RAM, or Matrix windows will cause the main IDE window to be
displayed immediately behind the current window.

• Update Target File... button added to Output Window
• fixed problem with displaying {DEBUG ON}, {DEBUG OFF} messages
• added trace messages for FPU {ERROR:xxxx} messages

Changes to Compiler
• added definitions for DEVIO,SDFAT
• comments included on the FPU source line for register definitions, variable definitions,

and function definitions are now included in the target code generated.
• added devio(FIFOn, ALLOC_MEM, size) function
• added support for devio(FIFOn, ALLOC_MEMR, regSize) function
• added #DEVICE device_file{,device_name} directive
• removed support for devio(VDRIVE2,…) functions
• added #TARGET_OPTIONS, PROPELLER directive
• added #TARGET_CODE link_ID directive
• fixed target code generation for assigning 64-bit float constants to a register

Changes to Target Description File
• added TARGET_OPTIONS=<PROPELLER>
• added WRITE_CMD=<> command
• added READ_CMD=<> command
• added WRITE_DATA=<> command

Micromega Corporation 3 uM-FPU64 IDE - Release 411

RAM Display Window

Memory Allocation shows the allocation of RAM to the various memory areas.
Foreground Memory allocated to the foreground process.
Background Memory allocated to the background process.
Other Memory allocated to FIFO1, FIFO2, FIFO3, FIFO4, and any

loadable devices.
DMA DMA memory. Used by the ADC instructions. Can be accessed

with indirect pointers.

The Load Pointers button set the description, type and value fields for any foreground
pointer currently loaded in the Register display of the Debug window. If the pointer is an
array pointer, each element of the array is added as a description.

Micromega Corporation 4 uM-FPU64 IDE - Release 411

The Read Memory button reads the current contents of RAM and updates the displays.
If the memory allocation has changed, the formatted display is cleared, and the last
format file used is reloaded. All RAM values that have changed since the last read are
highlighted in red, and all non-zero values are shown with a light yellow background.

The Clear Format button clears the formatted display. If the RAM format file default.txt
exists in the ~/My Documents/Micromega/RAM Files folder it will be loaded and the
formatted display is updated.

The Load Format button loads a RAM format file and updates the formatted display.

The Save Format button saves a RAM format file.

The Hex Display shows the value of each byte in RAM as a hexadecimal value. The
current selection in the formatted display outlined with a box in the hex display. Clicking
in the hex display will select the corresponding item in the formatted display. Values that
have changed since the last time RAM was read are highlighted in red, and non-zero
value are shown with a light yellow background.

The Formatted Display shows the RAM contents formatted according to the type
specified. Each row in the formatted display can have a separate description, type, and
modifier. The description, type and modifer can be entered using a RAM format file, or
entered interactively using the Change RAM Format dialog that is displayed by right-
clicking on a row in the formatted display. Multiple rows can be changed by first
selecting the multiple rows, then right-clicking within the selection.

The Description field can be used to enter any text string that doesn’t include a double
quote (“) character. There are some special cases:

n The type and modifier will be repeated n times specified (where
n is a decimal number).

* The type and modifier will be repeated until the end of the
memory area.

name[i]
name[i, j]
name[i, j, k] Specifies an array name, with the dimensions of the array given

by i, j and k. For each element of the array, the description will

Micromega Corporation 5 uM-FPU64 IDE - Release 411

be set the the name of the element and the type and modifier
will be repeated.

If you wish to use one of the special cases as a description, without it being
handled as a special case, then the description should be enclosed in double
quotes (“). (e.g. ”name[2,2,2]” will not be expanded into multiple array
elements).

RAM Format Files are text files containing a description of the format to use in the
formatted display. They are stored in the ~/My Documents/Micromega/RAM Files folder.
The autosave.txt file is saved automatically to the ~/My Documents/Micromega/RAM
Files folder when the RAM Display window is closed, and loaded when the RAM
Display window is first opened. The RAM format file default.txt is used to specify the
default format for the formatted display. If default.txt exists in the ~/My Documents/
Micromega/RAM Files folder it will be loaded when the Clear Format button is pressed.
Other files can be written and edited by the user. The RAM format files can contain the
following lines:

Header
<RAM FORMAT> or <RAM FORMAT OVERLAY>

This must be the first line of the file. The <RAM FORMAT> line indicates that
the file contains a full format description. The formatted display is cleared
before loading the format file. The <RAM FORMAT OVERLAY> line
indicates that the file is an overlay. The descriptions and types defined in the
file will be added the existing formatted display.

Comment
; comment

Any line that begins with a semi-colon (;) is a comment line. The autosave.txt
file adds comments showing the date and time and the memory allocation in
effect when the file was saved.

Memory Area
<FOREGROUND>
<BACKGROUND>
<DMA>
<FIFO1> to <FIFO4>
<DEVICE1> to <DEVICE6>

Specifies the memory area for the description lines that follow. An optional
offset can be added as a second argument (e.g. <FOREGROUND, 100>).
This specifies a decimal offset into the memory area for the next description
line. The offset can also have multiple decimal values that are added together
(e.g. <FOREGROUND, 100+10>).

Description
description, type, modifier

Micromega Corporation 6 uM-FPU64 IDE - Release 411

The description can be any text string that doesn’t include a double quote (“)
character. There are some special cases:

n The type and modifier will be repeated n times specified (where
n is a decimal number).

* The type and modifier will be repeated until the end of the
memory area.

name[i]
name[i, j]
name[i, j, k] Specifies an array name, with the dimensions of the array given

by i, j and k. For each element of the array, the description will
be set the the name of the element and the type and modifier
will be repeated.

If you wish to use one of the special cases as a description, without it being
handled as a special case, then the description should be enclosed in double
quotes (“). (e.g. ”name[2,2,2]” will not be expanded into multiple array
elements).

If the description string contains a comma, or you wish to use one of the
special cases without it being handled as a special case, then the description
must be enclosed in double quotes (“). (e.g. ”name[2,2,2]” will not be
expanded into multiple array elements).

The type can be one of the following: INT8, UINT8, INT16, UINT16,
LONG32, ULONG32, FLOAT32, LONG64, FLOAT64.

The modifier is optional, and if not specified no modifier is used. The modifier
can be one of the following: HEX, BIN, ASC. The BIN modifier only displays
the lower 16 bits if the type is greater than 16 bits. The ASC modifier displays
the ASCII value of the lower 8 bits.

Micromega Corporation 7 uM-FPU64 IDE - Release 411

Updating Target Files with Linked Code
Output Tab Button Bar Compiler Output Window

Connection Status Status Message
Target code generated by the compiler can by manually copied to target source files using copy-
and-paste. An automated update method is available using the Update Target File... button in
the Output Window. To use the automated update method, special comments are inserted into
the target source file to define the begin and end points for code insertion. These special
comments, or links, are generated by the compiler. Links are automatically generated for register
definitions, function definitions, and variable definitions. An example of a register definition link
is shown below:

 // [--- uM-FPU64 ---] Begin Register_Definitions
 #define Radius 10 // uM-FPU register
 #define Diameter 11 // uM-FPU register
 #define Circumference 12 // uM-FPU register
 #define Area 13 // uM-FPU register
 // [--- uM-FPU64 ---] End Register_Definitions

Other user-defined links are generated by using the #target_code link_id directive in the
FPU file. For example, using the following directive in the FPU file:

Micromega Corporation 8 uM-FPU64 IDE - Release 411

 #target_code calculations

Will generate the following code in the Output Window.

 // [--- uM-FPU64 ---] Begin calculations
 // Radius = distance / 1000 ' Calculations
 Fpu.write(SELECTA, Radius, LOADWORD);
 Fpu.writeWord(distance);
 Fpu.write(FSET0, LOADWORD);
 Fpu.writeWord(1000);
 Fpu.write(FDIV0);
 // [--- uM-FPU64 ---] End calculations

To initially insert links into the target source file, copy-and-paste the links from the Output
Window to the target source file.

When the Update Target File... button is pressed, a dialog is displayed so the user can select a
target file. Any link in the target file with a matching link in the Output Window will be
updated with the code from the Output Window. A timestamp comment is added to the start of
the linked code stored in the target file. Linked code is inserted into the target file using the
indentation of the begin link in the target file. This allows the inserted code to be properly
aligned with other target code.

Micromega Corporation 9 uM-FPU64 IDE - Release 411

Trace Messages for FPU Errors
If an error occurs on the FPU and the debug monitor is enabled, a trace message is now
displayed, and Break occurs. The error messages are as follows:
FPU Error: Address error

An address error occurred inside an XOP instruction. The likely cause is an invalid parameter
being specified in an XOP instruction.

FPU Error: Buffer overflow
The 256 byte FPU instruction buffer has been exceeded. This can be avoided by waiting for a
ready status at least every 256 bytes, if more than 256 byes are sent to the FPU between read
operations. If debug trace is enabled, instructions take longer to execute, particularly if the
serial buffer fills, which can sometimes lead to an FPU buffer overflow that doesn’t occur an
normal execution speed.

FPU Error: Call level exceeded
The 16 levels of call nesting available on the uM-FPU64 has been exceeded.

FPU Error: Device not loaded
A DEVIO,device,LOAD_DEVICE,… instruction failed because the loadable
device was not programmed into Flash memory.

FPU Error: Function not defined
A user function has been called that has is not currently stored in FPU Flash memory.

FPU Error: Incomplete Instruction
An instruction that requires multiple bytes has not received the required number of bytes
within the timeout period of one second. This is generally caused by a programming error in
the target code.

FPU Error: Invalid parenthesis
There are 8 levels of parentheses available using the LEFT and RIGHT instructions. Either
too many LEFT instructions have been sent, or there is a mismatch with the number of LEFT
and RIGHT instructions.

FPU Error: Memory Allocation failed
A memory allocation failed because the number of bytes requested were not available
in the dynamic allocation area.

FPU Error: XOP not defined
An extended opcode (XOP) was called that is not currently stored in FPU Flash memory.

Reference Guide: Auto Step and Conditional Breakpoints

Micromega Corporation 10 uM-FPU64 IDE - Release 411

Compiler Changes

#DEVICE
Defines a loadable device. The device code is loaded from the specified device library file.

Syntax
#XOP device_file{:device_name}

The device code is loaded from the specified device library file. A #DEVICE directive and
a call to devio(device,LOAD_DEVICE,device_name) must be included in the
FPU source file before a loadable device can be used.

Examples

#TARGET_CODE
Specify target code link.

Syntax
#TARGET_CODE link_ID

This directive instructs the compiler to generate a target code link. Target code links allow
target files to be automatically updated when the Update Target File… button is pressed in
the Output Window. A begin link is output at the start of linked code and an end link is
output at the end of the linked code. The user can define as many links as needed.

Name
device_file

device_name

Type
string

string

Description
Specifies the name of a Device Library File.

Specifies the name of the loadable device. If
device_name is not specified, then device_name is
the same as the device_file name.

 #DEVICE sdfat ; loads the SD FAT16/FAT32 device

Name
link_ID

Type
string

Description
Specifies a unique link ID.

Reference Guide: Auto Step and Conditional Breakpoints

Micromega Corporation 11 uM-FPU64 IDE - Release 411

Example
This source code:

Generates the following output for the Arduino target:

If this linked code is copied to the target file, output from future compiles can be
automatically copied to the target file using the Update Target File… button in the Output
Window.

#TARGET_CODE Section1
 F1 = F2 + 10

// [--- uM-FPU64 ---] Begin Section1
 // F1 = F2 + 10
 Fpu.write(SELECTA, 1, FSET, 2, FADDI, 10);
 //
// [--- uM-FPU64 ---] End Section1

Reference Guide: Auto Step and Conditional Breakpoints

Micromega Corporation 12 uM-FPU64 IDE - Release 411

Target Description File Changes

READ_CMD Define format for Read Command Instructions

READ_CMD=<string>
Default: empty string
Parameters: {name},{n},{data}
Example: READ_CMD=<{name} := FPU.ReadCmd{n}({data}>

Description: This command defines the format of the read command instructions. Parameter {name} is replaced
with the target variable name. Parameter {n} is replaced with the appropriate read command as
follows:

ReadCmd, ReadCmdByte, ReadCmdWord, ReadCmdLong, ReadCmd2Long,
ReadCmdStr, ReadCmdByte3.

Parameter {data} is replaced with the appropriate data items for the read command.

WRITE_CMD Define format for Write Command Instructions

WRITE_CMD=<string>
Default: empty string
Parameters: {n},{data}
Example: WRITE_CMD=<FPU.WriteCmd{n}({data}>

Description: This command defines the format of the write command instructions. Parameter {n} is replaced
with the appropriate write command as follows:

WriteCmd, WriteCmdByte, WriteCmdByte2, WriteCmdByte3,
WriteCmdByte4, WriteCmdByteWord, WriteCmdByte2Word,
WriteCmdByte2Word, WriteCmdByteLong, WriteCmdWord,
WriteCmdLong, WriteCmdStr, WriteCmdByteStr, WriteCmdByte2Str.

Parameter {data} is replaced with the appropriate data items for the write command.

WRITE_DATA Define format for Write Data Instructions

WRITE_DATA=<string>
Default: empty string
Parameters: {n},{data}
Example: WRITE_DATA=<FPU.WriteData{n}({data}>

Description: This command defines the format of the write data instructions. Parameter {n} is replaced with the
appropriate write data suffix depending on the number of data items.

WriteData1, WriteData2, WriteData3, …
Parameter {data} is replaced with the appropriate data items for the write data instructions. The
write data instructions have a datatype as the first argument, which specifies the data types of the
remaining arguments. This is used by targets that pass all arguments as 32-bit values (e.g. Parallax
Propeller). The code generator create the datatype value as a series of is a 2-bit values:

00 8-bit data
01 16-bit data

Reference Guide: Auto Step and Conditional Breakpoints

Micromega Corporation 13 uM-FPU64 IDE - Release 411

10 32-bit data
11 8-bit opcode

The datatype bits are specified from left to right, and the value is right justified.

	Changes for IDE Release 411
	Firmware Upgrade
	Highlights
	Parallax Propeller Support
	Code Generation using Data Commands
	Updating Target Files with Linked Code
	Trace Messages for FPU Errors
	RAM Display window
	Changes to IDE Interface
	Changes to Compiler
	Changes to Target Description File
	FPU Error: Address error
	FPU Error: Buffer overflow
	FPU Error: Call level exceeded
	FPU Error: Device not loaded
	FPU Error: Function not defined
	FPU Error: Incomplete Instruction
	FPU Error: Invalid parenthesis
	FPU Error: Memory Allocation failed
	FPU Error: XOP not defined

	RAM Display Window
	Updating Target Files with Linked Code
	Trace Messages for FPU Errors
	Compiler Changes
	#DEVICE
	#TARGET_CODE

	Target Description File Changes

